Intermittent estimation of stationary time series

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermittent estimation of stationary time series

Intermittent estimation of stationary time series. Abstract Let {X n } ∞ n=0 be a stationary real-valued time series with unknown distribution. Our goal is to estimate the conditional expectation of X n+1 based on the observations X i , 0 ≤ i ≤ n in a strongly consistent way. Bailey and Ryabko proved that this is not possible even for ergodic binary time series if one estimates at all values of...

متن کامل

Spectral Estimation of Stationary Time Series: Recent Developments

Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...

متن کامل

Covariance Matrix Estimation for Stationary Time Series

We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider a thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz [Math. Ann. 70 (1911) 351–376...

متن کامل

Parameter Estimation for Periodically Stationary Time Series

The innovations algorithm can be used to obtain parameter estimates for periodically stationary time series models. In this paper we compute the asymptotic distribution for these estimates in the case where the innovations have a finite fourth moment. These asymptotic results are useful to determine which model parameters are significant. In the process, we also develop asymptotics for the Yule...

متن کامل

Using Wavelets and Splines to Forecast Non-Stationary Time Series

 This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Test

سال: 2004

ISSN: 1133-0686,1863-8260

DOI: 10.1007/bf02595785